605 research outputs found

    Constraining the Circumbinary Envelope of Z CMa via imaging polarimetry

    Get PDF
    Z CMa is a complex binary system, composed of a Herbig Be and an FU Ori star. The Herbig star is surrounded by a dust cocoon of variable geometry, and the whole system is surrounded by an infalling envelope. Previous spectropolarimetric observations have reported a preferred orientation of the polarization angle, perpendicular to the direction of a large, parsec-sized jet associated with the Herbig star. The variability in the amount of polarized light has been associated to changes in the geometry of the dust cocoon that surrounds the Herbig star. We aim to constrain the properties of Z CMa by means of imaging polarimetry at optical wavelengths. Using ExPo, a dual-beam imaging polarimeter which operates at optical wavelengths, we have obtained imaging (linear) polarimetric data of Z CMa. Our observations were secured during the return to quiescence after the 2008 outburst. We detect three polarized features over Z CMa. Two of these features are related to the two jets reported in this system: the large jet associated to the Herbig star, and the micro-jet associated to the FU Ori star. Our results suggest that the micro-jet extends to a distance ten times larger than reported in previous studies. The third feature suggests the presence of a hole in the dust cocoon that surrounds the Herbig star of this system. According to our simulations, this hole can produce a pencil beam of light that we see scattered off the low-density envelope surrounding the system.Comment: Accepted for publication in A\&

    The color dependent morphology of the post-AGB star HD161796

    Get PDF
    Context. Many protoplanetary nebulae show strong asymmetries in their surrounding shell, pointing to asymmetries during the mass loss phase. Questions concerning the origin and the onset of deviations from spherical symmetry are important for our understanding of the evolution of these objects. Here we focus on the circumstellar shell of the post-AGB star HD 161796. Aims. We aim at detecting signatures of an aspherical outflow, as well as to derive the properties of it. Methods. We use the imaging polarimeter ExPo (the extreme polarimeter), a visitor instrument at the William Herschel Telescope, to accurately image the dust shell surrounding HD 161796 in various wavelength filters. Imaging polarimetry allows us to separate the faint, polarized, light from circumstellar material from the bright, unpolarized, light from the central star. Results. The shell around HD 161796 is highly aspherical. A clear signature of an equatorial density enhancement can be seen. This structure is optically thick at short wavelengths and changes its appearance to optically thin at longer wavelengths. In the classification of the two different appearances of planetary nebulae from HST images it changes from being classified as DUPLEX at short wavelengths to SOLE at longer wavelengths. This strengthens the interpretation that these two appearances are manifestations of the same physical structure. Furthermore, we find that the central star is hotter than often assumed and the relatively high observed reddening is due to circumstellar rather than interstellar extinction.Comment: Accepted for publication in A&

    The Extreme Polarimeter: Design, Performance, First Results & Upgrades

    Full text link
    Well over 700 exoplanets have been detected to date. Only a handful of these have been observed directly. Direct observation is extremely challenging due to the small separation and very large contrast involved. Imaging polarimetry offers a way to decrease the contrast between the unpolarized starlight and the light that has become linearly polarized after scattering by circumstellar material. This material can be the dust and debris found in circumstellar disks, but also the atmosphere or surface of an exoplanet. We present the design, calibration approach, polarimetric performance and sample observation results of the Extreme Polarimeter, an imaging polarimeter for the study of circumstellar environments in scattered light at visible wavelengths. The polarimeter uses the beam-exchange technique, in which the two orthogonal polarization states are imaged simultaneously and a polarization modulator swaps the polarization states of the two beams before the next image is taken. The instrument currently operates without the aid of Adaptive Optics. To reduce the effects of atmospheric seeing on the polarimetry, the images are taken at a frame rate of 35 fps, and large numbers of frames are combined to obtain the polarization images. Four successful observing runs have been performed using this instrument at the 4.2 m William Herschel Telescope on La Palma, targeting young stars with protoplanetary disks as well as evolved stars surrounded by dusty envelopes. In terms of fractional polarization, the instrument sensitivity is better than 10^-4. The contrast achieved between the central star and the circumstellar source is of the order 10^-6. We show that our calibration approach yields absolute polarization errors below 1%

    Flavivirus Cell Entry and Membrane Fusion

    Get PDF
    Flaviviruses, such as dengue virus and West Nile virus, are enveloped viruses that infect cells through receptor-mediated endocytosis and fusion from within acidic endosomes. The cell entry process of flaviviruses is mediated by the viral E glycoprotein. This short review will address recent advances in the understanding of flavivirus cell entry with specific emphasis on the recent study of Zaitseva and coworkers, indicating that anionic lipids might play a crucial role in the fusion process of dengue virus [1]

    Chemical spots in the absence of magnetic field in the binary HgMn star 66 Eridani

    Full text link
    According to our current understanding, a subclass of the upper main sequence chemically peculiar stars, called mercury-manganese (HgMn), is non-magnetic. Nevertheless, chemical inhomogeneities were recently discovered on their surfaces. At the same time, no global magnetic fields stronger than 1-100 G are detected by modern studies. The goals of our study are to search for magnetic field in the HgMn binary system 66 Eri and to investigate chemical spots on the stellar surfaces of both components. Our analysis is based on high quality spectropolarimetric time-series observations obtained during 10 consecutive nights with the HARPSpol instrument at the ESO 3.6-m telescope. To increase the sensitivity of the magnetic field search we employed a least-squares deconvolution (LSD). We used spectral disentangling to measure radial velocities and study line profile variability. Chemical spot geometry was reconstructed using multi-line Doppler imaging. We report a non-detection of magnetic field in 66 Eri, with error bars 10-24 G for the longitudinal field. Circular polarization profiles also do not indicate any signatures of complex surface magnetic fields. For a simple dipolar field configuration we estimated an upper limit of the polar field strength to be 60-70 G. For the HgMn component we found variability in spectral lines of Ti, Ba, Y, and Sr with the rotational period equal to the orbital one. The surface maps of these elements reconstructed with the Doppler imaging technique, show relative underabundance on the hemisphere facing the secondary component. The contrast of chemical inhomogeneities ranges from 0.4 for Ti to 0.8 for Ba.Comment: 13 pages, 14 figure

    Three-dimensional magnetic and abundance mapping of the cool Ap star HD 24712 I. Spectropolarimetric observations in all four Stokes parameters

    Get PDF
    High-resolution spectropolarimetric observations provide simultaneous information about stellar magnetic field topologies and three-dimensional distributions of chemical elements. Here we present analysis of a unique full Stokes vector spectropolarimetric data set, acquired for the cool magnetic Ap star HD 24712. The goal of our work is to examine circular and linear polarization signatures inside spectral lines and to study variation of the stellar spectrum and magnetic observables as a function of rotational phase. HD 24712 was observed with the HARPSpol instrument at the 3.6-m ESO telescope over a period of 2010-2011. The resulting spectra have S/N ratio of 300-600 and resolving power exceeding 100000. The multiline technique of least-squares deconvolution (LSD) was applied to combine information from the spectral lines of Fe-peak and rare-earth elements. We used the HARPSPol spectra of HD 24712 to study the morphology of the Stokes profile shapes in individual spectral lines and in LSD Stokes profiles corresponding to different line masks. From the LSD Stokes V profiles we measured the longitudinal component of the magnetic field, , with an accuracy of 5-10 G. We also determined the net linear polarization from the LSD Stokes Q and U profiles. We determined an improved rotational period of the star, P_rot = 12.45812 +/- 0.00019d. We measured from the cores of Halpha and Hbeta lines. The analysis of measurements showed no evidence for a significant radial magnetic field gradient in the atmosphere of HD 24712. We used our and net linear polarization measurements to determine parameters of the dipolar magnetic field topology. We found that magnetic observables can be reasonably well reproduced by the dipolar model. We discovered rotational modulation of the Halpha core and related it a non-uniform surface distribution of rare-earth elements.Comment: Accepted for publication in A&

    Data Reduction Techniques for High Contrast Imaging Polarimetry. Applications to ExPo

    Full text link
    Imaging polarimetry is a powerful tool for detecting and characterizing exoplanets and circumstellar environments. Polarimetry allows a separation of the light coming from an unpolarized source such as a star and the polarized source such as a planet or a protoplanetary disk. Future facilities like SPHERE at the VLT or EPICS at the E-ELT will incorporate imaging polarimetry to detect exoplanets. The Extreme Polarimeter (ExPo) is a dual-beam imaging polarimeter that currently can reach contrast ratios of 10^5, enough to characterize circumstellar environments. We present the data reduction steps for a dual-beam imaging polarimeter that can reach contrast ratios of 10^5. The data obtained with ExPo at the William Herschel Telescope (WHT) are analyzed. Instrumental artifacts and noise sources are discussed for an unpolarized star and for a protoplanetary disk (AB Aurigae). The combination of fast modulation and dual-beam techniques allow us to minimize instrumental artifacts. A proper data processing and alignment of the images is fundamental when dealing with large contrasts. Imaging polarimetry proves to be a powerful method to resolve circumstellar environments even without a coronagraph mask or an Adaptive Optics system.Comment: 9 pages, 12 Figures, Accepted for publication in A&

    High exposures to bioactivated cyclophosphamide are related to the occurrence of veno-occlusive disease of the liver following high-dose chemotherapy

    Get PDF
    We investigated whether the occurrence of veno-occlusive disease of the liver (VOD) may be associated with individual variations in the pharmacokinetics of high-dose cyclophosphamide. Patients received single or multiple courses of cyclophosphamide (1000 or 1500 mg m−2 day−1), thiotepa (80 or 120 mg m−2 day−1) and carboplatin (265–400 mg m−2 day−1) (CTC) for 4 consecutive days. The area under the plasma concentration–time curves (AUCs) were calculated for cyclophosphamide and its activated metabolites 4-hydroxycyclophosphamide and phosphoramide mustard based on multiple blood samples. Possible relationships between the AUCs and the occurrence of VOD were studied. A total of 59 patients (115 courses) were included. Four patients experienced VOD after a second CTC course. The first-course AUC of 4-hydroxycyclophosphamide (P=0.003) but not of phosphoramide mustard (P=0.101) appeared to be predictive of the occurrence of VOD after multiple courses. High exposures to bioactivated cyclophosphamide may lead to increased organ toxicity

    Serotonergic Drugs Inhibit Chikungunya Virus Infection at Different Stages of the Cell Entry Pathway

    Get PDF
    Chikungunya virus (CHIKV) is an important reemerging human pathogen transmitted by mosquitoes. The virus causes an acute febrile illness, chikungunya fever, which is characterized by headache, rash, and debilitating (poly)arthralgia that can reside for months to years after infection. Currently, effective antiviral therapies and vaccines are lacking. Due to the high morbidity and economic burden in the countries affected by CHIKV, there is a strong need for new strategies to inhibit CHIKV replication. The serotonergic drug 5-nonyloxytryptamine (5-NT) was previously identified as a potential host-directed inhibitor for CHIKV infection. In this study, we determined the mechanism of action by which the serotonin receptor agonist 5-NT controls CHIKV infection. Using time-of-addition and entry bypass assays, we found that 5-NT predominantly inhibits CHIKV in the early phases of the replication cycle, at a step prior to RNA translation and genome replication. Intriguingly, however, no effect was seen during virus-cell binding, internalization, membrane fusion and genomic RNA (gRNA) release into the cell cytosol. In addition, we show that the serotonin receptor antagonist methiothepin mesylate (MM) also has antiviral properties toward CHIKV and specifically interferes with the cell entry process and/or membrane fusion. Taken together, pharmacological targeting of 5-HT receptors may represent a potent way to limit viral spread and disease severity. IMPORTANCE The rapid spread of mosquito-borne viral diseases in humans puts a huge economic burden on developing countries. For many of these infections, including those caused by chikungunya virus (CHIKV), there are no specific treatment possibilities to alleviate disease symptoms. Understanding the virus-host interactions that are involved in the viral replication cycle is imperative for the rational design of therapeutic strategies. In this study, we discovered an antiviral compound, elucidated its mechanism of action, and propose serotonergic drugs as potential host-directed antivirals for CHIKV
    • …
    corecore